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ON THE BEST POSITION OF ELASTIC SYMMETRY PLANES IN 
AN ORTHOTROPIC BODY* 

G. A. SERHGIN and V. A. TROITSKII 

A problem of optimal positioning of elastic symmetry planes in an orthotropic body 
is considered. The criterion used is that of the minimum of potential energy of 
deformation characterizing the rigidity of the body. Analysis of the conditions of 
optimality leads to the interchangeability of the stress and deformation tensors. 
Mechanically different methods of realizing these conditions are established. An 
analogous analysis was carried out in /l/ for two-dimensional problems. 

1. Consider a linear elastic body V, bounded by the surface S. The elastic state of 
this body is described by the displacement vector II, Strain 8 and stress a tensors, all 
connected by the relations /2/ 

div (r + F = 0, 28 = vu + (& (1.1) 

in which F is the volume force vector and the superscript T denotes transposition. The 
elasticity relations are defined by the fourth rank elasticity tensor, and have the form /3/ 

8=L..‘7 (1.2) 

The boundary conditions are 

u=O on&, n.e=T on S, (1.3) 

where n is the unit vector of the outward normal directed towards the body and T is a given 
vector of surface forces. The potential energy of deformation H and work A donebyexternal 
forces are connected by the formula /2/ 

+A=$ o..L..adV 
s 
V 

Let us denote by e, the principal directions of elasticity, i.e. the unit vectors per- 
pendicular to the elastic symmetry planes of the body, and by A the rotation tensor connect- 
ing the unit vectors e, with the unit vectors of scme fixed r, coordinate system satisfying 
the relations 

e,, =: A+,, A=.A=E (1.5) 

where E is a unit tensor of second rank. Expanding the tensor L over a basis of the fourth 
rank tensors, we obtain 

L = L;,,,A.r, 0 A.r,,c3A.rp@ A.r; (1.6) 

where the summation is carried out over the repeated indices. We note that the components 
L&I~ of the tensor L can be expressed on the basis of the principal stresses in terms of 
the "technical" constants according to the formulas /3/ * 

LL,,, = L& = L& = I;‘& (1.7) 

L;,,=$ L&$ L;ots’& L;,=-%=+ 
P % * 

L;,=_-g=+, Lk,=- p-+ L;2,,+ 
I I* 

0 
i L’ L2aza=2c,s* 

i 
8lS1=2c, 

Here Sk and &,, are the Young's and shear moduli and vb,,, are the POiSSOn'S ratios (k#m, 

k, m = 4, 2, S). 
We consider the following problem of optimization. We require to find the rotation ten- 

sor A imparting an extremal value to the functional (l-4), with the relations (l.l)-_(1.3), 
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(1.5)- (1.7) fulfilled. 
Let us construct a new functional 

Q = n -+ 1 [u. (0 .u + F)+y..(AT.A- E)]dl 
ti 

which coincides with the old functional when all constraints are fulfilled. Here y is a 
symmetric tensor of second rank , serving here as a Lagrange multiplier. Having computed the 
first variation of this functional, we use the Ostrogradskii formula and equations (l-l)-- (1.3) 
to obtain 

OQz " ' 
Sl 

T~..bL..~+2~..(A.SAT)]dV>,0 

" 

Varying the formula (1.61, we obtain 

Carrying out the lengthy, although elementary transformations, we obtain the final axpression 
for the first variation 

&Q= &A-.(AT.~.af~-AT)dV >,O 

d 
(1.81 

Choosing suitably the components of the symmetric tensor 7, we can make the coefficients 
accompanying six variations of the components of the tensor A vanish. The three remaining 
coefficients must be equal to zero by virtue of the arbitrary character of the variations. 
Taking into account the symmetry of the tensors 1,s and a, we finally obtain the optimality 
condition 

a.iS=(f.a (1.91 

which yields three equations fordetenniningthreeunknowncomponents of the tensor A. 
If we denote by (Tkm",ekm the components Of the tenSOrS a and e- on the basis en andtake 

into account the relations (1.2) and (1.7), the above three equations will become 

a~Al+Q~~~;a(I/Clz-l!C*tf=O (i-2-3) (1.101 

(the remaining relations can be obtained by circular interchange of the indices 1,2,3). 

2. In the general case when all Young's moduli and shear moduli are different, the rel- 
ations (1.10) imply the existence of three types of zones (i.e. the methods of realizing the 
conditions of stationarity). In the first type zones the following relations hold: 

aEm0 = 0, k # m, k, m = 1,2,3 

and this means that the principal directions of the elasticity coincide with the principal 
directions of the tensor a. In the second type zones one of the following relations holds: 

u910 = azp30 = 0, A, = 0, a,so =j= 0 
ozl' = us1o = 0, A, = 0, ass’ # 0 

azao = a,," = 0, A, = 0, ozlo $: 0 

and here only one principal direction of the elasticity coincides with a principal direction 
of the tensor a. In the third type zones all shear stresses Ukm’ are different from zero. 

Let us analyze the relations (1.10) for the case when the principal values of ~,,a~. aa 

are all different. The commutativity of the tensors e and (r implies their coaxiality,there- 

fore we can write the elasticity relations (1.2) in the form 121 

s = (F&+(PP+wJ~ (2.1) 

where CPO, ‘cl. vz are known functions of aI,al,% and hence of the principal invariants of the 

tensor (r. The above functional dependence is determined by a system of a-lgebraic equations 
of the form 

%" (fl*, “.A3 91 F cpo -t (Fl% + rp,orr* (k = 1, 2, 3) (2.2) 

where Ek are the principal values of the tensor e. If the coefficients rpO,~,,(ciz havebeen 

found, then the optimal state is determined from the equations (l.l), (1.3) and (2.1), and 
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the optimal rotation tensor A is found from (1.10) in terms of the known tenSOr Q. 
The form of the functions ek (fftr~~.aI1) depends on the type of the zone. We shall describe 

a general method of finding these functions and indicate some particular feature8 of the dif- 
ferent types of zones. Let us denote by If the principal directions of the tensor u and 
by L,~ the canponents of the elasticity tensor on the basis rr". Since the tensors 6 
and (I are coaxial, we have 

L~~~5~+L~~5*+L~a~=o (k+m, k,m=i,2,3f 

L mnPQ = L~stkamramaplnqk’ akmak,, = bn (% = amho) 

The above system yields tbe coefficients s, in terms of c&I&X. In this manner we can ob- 
tain the relationship ~,,,~~(a~,a~, I a) and hence the functions in question (no summation to be 
performed over k!) 

a,,,,=3~,,, %-+-a,-po,-%a, (id243) 
I 

The tensor A is found by reducing the known tensor e to its principal axes. Let ua put a,= 
mar (an 4. at), a-- min (4, a,, 4~~) . This yields the first type zones: i)a,=; u+,u*== a-.2)+- u-,0, = 
Qt etc. Therefore the maximum possible number of the first type zones is six. 

As an example of the zone of the second type, we shall consider tbe zones for which the 
following relations hold: 

a,.* = asr* = 0, AI = 0, cr,'+ 0, uas* = a, (2.4 

(en= ann=acp* on=--an=elncp, ae=*=as=ELII=o, 
t&+= 1, e*=rr,o) 

We note that the equation Al= 0 determines two values of cp for the given tensor o.Indeed, 

ooazcp= 

The formulas (2.3) can be written as 

To determine the rotation tensor A, we must reduce the tensor a to its principal axes 
and supetimpose the principal direction of the elasticity e, on one of the principaldirections 
of the tensor Q. The remaining two are obtained by rotating the other two principal direc- 
tions by the angle 9 about the unit vector +, Thus the relations (2.4) define not moxe 
#an twelve zones. Since we can repeat the above procedure with the remaining two principal 
directions oftheelasticity.,s, and e,, it follows that the number of zones of the second type 
does not exceed thirty six. 

The most canplicated determination of tbe functions CX(U~ %,a,) is encountered in the 
case of the zones of the third type. Were, if the "technical" constants are not connected to 
each other by sane special relationship, then a general construction must be used. The same 
procedure can be adopted when h%,e8 are all different. In this case the tensors s and a 
in (2.1) must be interchanged. When the principal values contain pairs of identical values 
(e.g. al+%= ea.%= %), then one of the coefficients @fb,% and q, in (2.1) can be made equal 
to zero and the relation ~(a~,a,) sought. The case ~++=et.us=u, can be dealt with in 
the same manner, and by continuing this procedure we can go through all possible variants of 
the states of stress. 

Let us consider a particular case when the body bas cubic symmetry 

Et~E,eEl=E,Glei:Gn=Gn=C,yt=v ~mv~=v~=v*=v&~=V 

Here we have a single zone of the first type in which 
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i+v 
a==E"-- ' ETrs, 0;~=0 (kfm) 

B 

and one zone of the third type 

The maximum number of zones of the second type is three, and we have 

In the first zone u3= (r-, in the second zone 08 = o+ and in the third zone s* is equal to 

the intermediate principal value of the tensor (r. 
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